반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- CES 2O21 참가
- cudnn
- 머신러닝
- java역사
- Keras
- web 사진
- web 용어
- web 개발
- 대이터
- 자료구조
- paragraph
- bccard
- 재귀함수
- KNeighborsClassifier
- CES 2O21 참여
- html
- tensorflow
- 웹 용어
- mglearn
- discrete_scatter
- inorder
- pycharm
- postorder
- C언어
- 데이터전문기관
- classification
- 결합전문기관
- vscode
- web
- broscoding
Archives
- Today
- Total
bro's coding
tensorflow.mnist.초급 본문
반응형
# MNIST 데이터를 다운로드 한다.
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# TensorFlow 라이브러리를 추가한다.
import tensorflow as tf
# 변수들을 설정한다.
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
# cross-entropy 모델을 설정한다.
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\base.py:252: _internal_retry.<locals>.wrap.<locals>.wrapped_fn (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please use urllib or similar directly.
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting MNIST_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
# 경사하강법으로 모델을 학습한다.
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# 학습된 모델이 얼마나 정확한지를 출력한다.
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:189: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
0.9111
반응형
'[AI] > python.tensorflow' 카테고리의 다른 글
tensorflow.AUTOTUNE (0) | 2020.06.15 |
---|---|
tensorflow.distinguish mnist (0) | 2020.06.11 |
tensorflow.분류.mnist (0) | 2020.05.12 |
tensorflow.mnist (0) | 2020.05.12 |
tensorflow.분류(중간층) (0) | 2020.05.12 |
tensorflow.분류(중간층).relu,sigmoid 비교 (0) | 2020.05.12 |
tensorflow.분류(중간층X) (0) | 2020.05.12 |
tensorflow.placeholder (0) | 2020.05.11 |
Comments