반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- postorder
- KNeighborsClassifier
- 데이터전문기관
- CES 2O21 참가
- 결합전문기관
- discrete_scatter
- html
- C언어
- cudnn
- Keras
- CES 2O21 참여
- 머신러닝
- tensorflow
- web 용어
- mglearn
- inorder
- java역사
- web 개발
- paragraph
- web 사진
- vscode
- 재귀함수
- 웹 용어
- bccard
- web
- pycharm
- 자료구조
- classification
- broscoding
- 대이터
Archives
- Today
- Total
bro's coding
tensorflow.분류(중간층X) 본문
반응형
#속성 4개 3중 분류
iris=load_iris()
X=tf.placeholder(tf.float32,shape=(None,4))
y=tf.placeholder(tf.float32,shape=(None,3))
w=tf.Variable(tf.random.normal([4,3],0,0.1))
b=tf.Variable(tf.random.normal([3],0,0.1))
pred_y=X@w+b
##
entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=pred_y))
##
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01)
train_op=optimizer.minimize(entropy)
costs=[]
sess=tf.InteractiveSession()
tf.global_variables_initializer().run()
from sklearn.model_selection import train_test_split
X_trian,X_test,y_train,y_test=train_test_split(iris.data,np.eye(3)[iris.target])
for i in range(2000):
entropy_val,_=sess.run([entropy,train_op],feed_dict={X:X_trian,y:y_train})
costs.append(entropy_val)
# visualazation
import matplotlib.pyplot as plt
plt.plot(costs)
entropy_val,_=sess.run([entropy,train_op],feed_dict={X:X_test,y:y_test})
pred_yyy=pred_y.eval(feed_dict={X:X_test,y:y_test}).argmax(axis=1)
score=(pred_yyy==y_test.argmax(axis=1)).mean()
score
0.9736842105263158
#속성 4개 3중 분류
# RMSPropOptimizer
iris=load_iris()
X=tf.placeholder(tf.float32,shape=(None,4))
y=tf.placeholder(tf.float32,shape=(None,3))
w=tf.Variable(tf.random.normal([4,3],0,0.1))
b=tf.Variable(tf.random.normal([3],0,0.1))
pred_y=X@w+b
##
entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=pred_y))
##
optimizer=tf.train.RMSPropOptimizer(learning_rate=0.01)
train_op=optimizer.minimize(entropy)
costs=[]
sess=tf.InteractiveSession()
tf.global_variables_initializer().run()
from sklearn.model_selection import train_test_split
X_trian,X_test,y_train,y_test=train_test_split(iris.data,np.eye(3)[iris.target])
for i in range(2000):
entropy_val,_=sess.run([entropy,train_op],feed_dict={X:X_trian,y:y_train})
costs.append(entropy_val)
# visualazation
import matplotlib.pyplot as plt
plt.plot(costs)
entropy_val,_=sess.run([entropy,train_op],feed_dict={X:X_test,y:y_test})
pred_yyy=pred_y.eval(feed_dict={X:X_test,y:y_test}).argmax(axis=1)
score=(pred_yyy==y_test.argmax(axis=1)).mean()
score
1.0
반응형
'[AI] > python.tensorflow' 카테고리의 다른 글
tensorflow.분류.mnist (0) | 2020.05.12 |
---|---|
tensorflow.mnist (0) | 2020.05.12 |
tensorflow.분류(중간층) (0) | 2020.05.12 |
tensorflow.분류(중간층).relu,sigmoid 비교 (0) | 2020.05.12 |
tensorflow.placeholder (0) | 2020.05.11 |
tensorflow.irisdata적용 (0) | 2020.05.11 |
tensorflow.optimizer (0) | 2020.05.11 |
tensorflow.행렬곱,전치행렬 (0) | 2020.05.11 |
Comments