반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- 웹 용어
- classification
- bccard
- 결합전문기관
- CES 2O21 참여
- web 개발
- 대이터
- web 용어
- broscoding
- 머신러닝
- postorder
- java역사
- html
- cudnn
- web 사진
- 재귀함수
- web
- 데이터전문기관
- pycharm
- inorder
- vscode
- paragraph
- Keras
- tensorflow
- discrete_scatter
- CES 2O21 참가
- KNeighborsClassifier
- C언어
- 자료구조
- mglearn
Archives
- Today
- Total
bro's coding
tensorflow.분류(중간층).relu,sigmoid 비교 본문
반응형
#속성 4개 3중 분류
# RMSPropOptimizer
# 중간층 사용
# 뉴런 10개, 활성화 함수 relu
iris=load_iris()
X=tf.placeholder(tf.float32,shape=(None,4))
y=tf.placeholder(tf.float32,shape=(None,3))
w=tf.Variable(tf.random.normal([4,10],0,0.1))
b=tf.Variable(tf.random.normal([10],0,0.1))
u=tf.nn.relu(X@w+b)
ww=tf.Variable(tf.random.normal([10,3],0,0.1))
bb=tf.Variable(tf.random.normal([3],0,0.1))
pred_y=u@ww+bb
##
entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=pred_y))
##
optimizer=tf.train.RMSPropOptimizer(learning_rate=0.01)
train_op=optimizer.minimize(entropy)
costs1=[]
sess=tf.InteractiveSession()
tf.global_variables_initializer().run()
from sklearn.model_selection import train_test_split
X_trian,X_test,y_train,y_test=train_test_split(iris.data,np.eye(3)[iris.target])
for i in range(2000):
entropy_val,_=sess.run([entropy,train_op],feed_dict={X:X_trian,y:y_train})
costs1.append(entropy_val)
import matplotlib.pyplot as plt
plt.plot(costs)
#속성 4개 3중 분류
# RMSPropOptimizer
# 중간층 사용
# 뉴런 10개, 활성화 함수 sigmoid
iris=load_iris()
X=tf.placeholder(tf.float32,shape=(None,4))
y=tf.placeholder(tf.float32,shape=(None,3))
w=tf.Variable(tf.random.normal([4,10],0,0.1))
b=tf.Variable(tf.random.normal([10],0,0.1))
u=tf.nn.sigmoid(X@w+b)
ww=tf.Variable(tf.random.normal([10,3],0,0.1))
bb=tf.Variable(tf.random.normal([3],0,0.1))
pred_y=u@ww+bb
##
entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=pred_y))
##
optimizer=tf.train.RMSPropOptimizer(learning_rate=0.01)
train_op=optimizer.minimize(entropy)
costs2=[]
sess=tf.InteractiveSession()
tf.global_variables_initializer().run()
from sklearn.model_selection import train_test_split
X_trian,X_test,y_train,y_test=train_test_split(iris.data,np.eye(3)[iris.target])
for i in range(2000):
entropy_val,_=sess.run([entropy,train_op],feed_dict={X:X_trian,y:y_train})
costs2.append(entropy_val)
import matplotlib.pyplot as plt
plt.plot(costs)
반응형
'[AI] > python.tensorflow' 카테고리의 다른 글
tensorflow.distinguish mnist (0) | 2020.06.11 |
---|---|
tensorflow.분류.mnist (0) | 2020.05.12 |
tensorflow.mnist (0) | 2020.05.12 |
tensorflow.분류(중간층) (0) | 2020.05.12 |
tensorflow.분류(중간층X) (0) | 2020.05.12 |
tensorflow.placeholder (0) | 2020.05.11 |
tensorflow.irisdata적용 (0) | 2020.05.11 |
tensorflow.optimizer (0) | 2020.05.11 |
Comments