일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- 결합전문기관
- html
- 웹 용어
- bccard
- 재귀함수
- web 개발
- classification
- mglearn
- inorder
- Keras
- paragraph
- web 용어
- 데이터전문기관
- pycharm
- tensorflow
- vscode
- cudnn
- C언어
- web
- 머신러닝
- 자료구조
- postorder
- CES 2O21 참가
- CES 2O21 참여
- 대이터
- KNeighborsClassifier
- broscoding
- java역사
- web 사진
- discrete_scatter
- Today
- Total
목록분류 전체보기 (689)
bro's coding

import numpy as np import matplotlib.pyplot as plt plt.axis([-10,10,-10,10]) plt.vlines([0,5,-5],-10,10,linestyles=':') # 수직으로 점(0,5,-5)에 -10에서 10까지 그려라 plt.hlines([0,5,-5],-10,10,linestyles=':') # ([그리는 좌표],길이,선 스타일) plt.text(0,0,'hello',fontsize=20,va='top',ha='right') # 글 쓰기 # 화살표 plt.annotate('zero',xy=(0,0),xytext=(5,5),arrowprops=dict(facecolor='black')) # (문자,xy=화살표 방향, xytext=문자,화살표 위치,a..

import numpy as np import matplotlib.pyplot as plt plt.subplot(2,2,1) plt.plot([1,2,3,4]) plt.subplot(2,2,2) plt.scatter(np.random.randn(100),np.random.randn(100)) plt.subplot(2,2,3) plt.bar(range(10),range(10)) plt.subplot(2,2,4) plt.imshow(np.random.randn(64,64)) matplotlib.subplot(그래프 여러개 그리기 1) axes[0,0].plot([1,2,3,4]) import numpy as np import matplotlib.pyplot as plt axes[0,0].plot([1,2,3..

axes[0,0].plot([1,2,3,4]) import numpy as np import matplotlib.pyplot as plt axes[0,0].plot([1,2,3,4]) axes[0,1].scatter(np.random.randn(100),np.random.randn(100)) axes[1,0].bar(range(10),range(10)) axes[1,1].imshow(np.random.randn(64,64)) fig.suptitle('Test',fontsize=20) axes[0,0].set_title('Test1') matplotlib.subplot(그래프 여러개 그리기 2) import numpy as np import matplotlib.pyplot as plt plt.subplot..

import numpy as np import matplotlib.pyplot as plt x=np.arange(-1,1,0.1) y=np.arange(-1,1,0.1) X,Y=np.meshgrid(x,y) Z=np.exp(-(X**2+Y**2)) CS=plt.contourf(X,Y,Z,levels=np.arange(-1,1,0.05),alpha=0.5,cmap='seismic') plt.colorbar() CS=plt.contour(X,Y,Z,levels=np.arange(-1,1,0.05)) plt.clabel(CS,inline=2,fontsize=10) https://broscoding.tistory.com/81 matplotlib.contour(등고선 그리기 1) import numpy as np..

import numpy as np import matplotlib.pyplot as plt # x,y의 구간 설정 x=np.arange(-1,1,0.1) y=np.arange(-1,1,0.1) # x,y에 대한 관계좌표 설정 X,Y=np.meshgrid(x,y) # X,Y에 관한 Z값 설정 Z=np.sin(X*Y) #var = plt.contour(X, Y, Z, 레벨 설정) CS=plt.contour(X,Y,Z,levels=np.arange(-1,1,0.2)) #주석 달아주기 plt.clabel(CS,inline=2,fontsize=10) # 컬러바 생성 plt.colorbar() https://broscoding.tistory.com/82 matplotlib.contourf(등고선 그리기 2) imp..

import matplotlib.pyplot as plt img=plt.imread('제목 없음.png') plt.imshow(img*[2.,1.,1.],vmax=1)

import matplotlib.pyplot as plt img=plt.imread('제목 없음.png') plt.imshow(img.mean(axis=2),cmap='gray',vmin=0,vmax=1) plt.colorbar()
a = np.ones([4,3]) a ''' array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]) ''' a+[1,2,3] ''' [2,3,4] [2,3,4] [2,3,4] [2,3,4] ''' https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html Broadcasting — NumPy v1.17 Manual Broadcasting Note See this article for illustrations of broadcasting concepts. The term broadcasting describes how numpy treats arrays with different shapes d..
a = np.arange(12).reshape(4,3) a ''' array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) ''' 1/a ''' array([[ inf, 1. , 0.5 ], [0.33333333, 0.25 , 0.2 ], [0.16666667, 0.14285714, 0.125 ], [0.11111111, 0.1 , 0.09090909]]) '''