반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- bccard
- cudnn
- mglearn
- KNeighborsClassifier
- postorder
- 머신러닝
- broscoding
- vscode
- web 용어
- discrete_scatter
- CES 2O21 참가
- Keras
- tensorflow
- inorder
- classification
- java역사
- 결합전문기관
- web 개발
- 대이터
- 웹 용어
- CES 2O21 참여
- web
- 자료구조
- html
- paragraph
- 재귀함수
- pycharm
- C언어
- web 사진
- 데이터전문기관
Archives
- Today
- Total
bro's coding
sklearn.decomposition.PCA.dimension(30->2) 본문
반응형
X_pca=pca.transform(X_norm)
plt.scatter(X_pca[:,0],X_pca[:,1],c=cancer.target,alpha=0.3)
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()
cancer.feature_names.shape
# (30,)
from sklearn.decomposition import PCA
pca=PCA(2)
X_norm=(cancer.data-cancer.data.mean(axis=0))/cancer.data.std(axis=0)
pca.fit(X_norm)
# 속성 중요도
pca.components_
'''
array([[ 0.21890244, 0.10372458, 0.22753729, 0.22099499, 0.14258969,
0.23928535, 0.25840048, 0.26085376, 0.13816696, 0.06436335,
0.20597878, 0.01742803, 0.21132592, 0.20286964, 0.01453145,
0.17039345, 0.15358979, 0.1834174 , 0.04249842, 0.10256832,
0.22799663, 0.10446933, 0.23663968, 0.22487053, 0.12795256,
0.21009588, 0.22876753, 0.25088597, 0.12290456, 0.13178394],
[-0.23385713, -0.05970609, -0.21518136, -0.23107671, 0.18611302,
0.15189161, 0.06016536, -0.0347675 , 0.19034877, 0.36657547,
-0.10555215, 0.08997968, -0.08945723, -0.15229263, 0.20443045,
0.2327159 , 0.19720728, 0.13032156, 0.183848 , 0.28009203,
-0.21986638, -0.0454673 , -0.19987843, -0.21935186, 0.17230435,
0.14359317, 0.09796411, -0.00825724, 0.14188335, 0.27533947]])
'''
반응형
'[AI] > python.sklearn' 카테고리의 다른 글
sklearn.decomposition.PCA.picture.recover (0) | 2020.04.22 |
---|---|
sklearn.datasets.fetch_lfw_people (0) | 2020.04.22 |
sklearn.naive_bayes.BernoulliNB (0) | 2020.04.21 |
sklearn.ensemble .GradientBoostingClassifier (0) | 2020.04.21 |
sklearn.decomposition.PCA.dimension(4->2) (0) | 2020.04.21 |
sklearn.decomposition.PCA.visualization (0) | 2020.04.21 |
sklearn.decomposition.PCA.basic (0) | 2020.04.21 |
sklearn.cluster.DBSCAN (0) | 2020.04.21 |
Comments