반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- web 사진
- CES 2O21 참여
- inorder
- 대이터
- KNeighborsClassifier
- classification
- postorder
- discrete_scatter
- mglearn
- web 개발
- java역사
- 재귀함수
- 결합전문기관
- web 용어
- 머신러닝
- 데이터전문기관
- bccard
- 자료구조
- paragraph
- 웹 용어
- cudnn
- pycharm
- web
- tensorflow
- CES 2O21 참가
- C언어
- broscoding
- html
- vscode
- Keras
Archives
- Today
- Total
bro's coding
sklearn.cluster.DBSCAN 본문
반응형
https://broscoding.tistory.com/165
머신러닝.sklearn.datasets.make_moons
from sklearn.datasets import make_moons X,y=make_moons(noise=0.1) plt.scatter(X[:,0],X[:,1],c=y)
broscoding.tistory.com
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs,make_circles,make_moons
X,y=make_moons(noise=0.07,random_state=1)
plt.scatter(X[:,0],X[:,1],c=y,cmap='Reds')
from sklearn.cluster import DBSCAN
dbscan=DBSCAN(min_samples=3,eps=0.3)# min_samples = 3(반경안에 들어오는 셈플 수)
dbscan.fit(X)
plt.scatter(X[:,0],X[:,1],c=dbscan.labels_)
plt.colorbar()
from sklearn.cluster import DBSCAN
dbscan=DBSCAN(min_samples=9,eps=0.3) # min_samples = 9(반경안에 들어오는 셈플 수)
dbscan.fit(X)
plt.scatter(X[:,0],X[:,1],c=dbscan.labels_)
plt.colorbar()
반응형
'[AI] > python.sklearn' 카테고리의 다른 글
sklearn.decomposition.PCA.dimension(30->2) (0) | 2020.04.21 |
---|---|
sklearn.decomposition.PCA.dimension(4->2) (0) | 2020.04.21 |
sklearn.decomposition.PCA.visualization (0) | 2020.04.21 |
sklearn.decomposition.PCA.basic (0) | 2020.04.21 |
sklearn.datasets.make_moons (0) | 2020.04.21 |
sklearn.cluster.KMeans.basic (0) | 2020.04.21 |
sklearn.preprocessing.MinMaxScaler, StandardScaler, Normalizer (0) | 2020.04.20 |
sklearn.RandomForestClassifier.feature_importances_(중요도 표현) (0) | 2020.04.20 |
Comments