반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- pycharm
- broscoding
- 재귀함수
- Keras
- cudnn
- CES 2O21 참가
- web 사진
- html
- web 용어
- web
- 데이터전문기관
- bccard
- CES 2O21 참여
- 웹 용어
- classification
- 머신러닝
- C언어
- 결합전문기관
- KNeighborsClassifier
- postorder
- 자료구조
- mglearn
- discrete_scatter
- java역사
- tensorflow
- 대이터
- paragraph
- web 개발
- vscode
- inorder
Archives
- Today
- Total
bro's coding
sklearn.datasets.fetch_lfw_people 본문
반응형
people=fetch_lfw_people(min_faces_per_person=20,resize=0.7)
dir(people)
people.target_names
array(['Alejandro Toledo', 'Alvaro Uribe', 'Amelie Mauresmo',
'Andre Agassi', 'Angelina Jolie', 'Ariel Sharon',
'Arnold Schwarzenegger', 'Atal Bihari Vajpayee', 'Bill Clinton',
'Carlos Menem', 'Colin Powell', 'David Beckham', 'Donald Rumsfeld',
'George Robertson', 'George W Bush', 'Gerhard Schroeder',
'Gloria Macapagal Arroyo', 'Gray Davis', 'Guillermo Coria',
'Hamid Karzai', 'Hans Blix', 'Hugo Chavez', 'Igor Ivanov',
'Jack Straw', 'Jacques Chirac', 'Jean Chretien',
'Jennifer Aniston', 'Jennifer Capriati', 'Jennifer Lopez',
'Jeremy Greenstock', 'Jiang Zemin', 'John Ashcroft',
'John Negroponte', 'Jose Maria Aznar', 'Juan Carlos Ferrero',
'Junichiro Koizumi', 'Kofi Annan', 'Laura Bush',
'Lindsay Davenport', 'Lleyton Hewitt', 'Luiz Inacio Lula da Silva',
'Mahmoud Abbas', 'Megawati Sukarnoputri', 'Michael Bloomberg',
'Naomi Watts', 'Nestor Kirchner', 'Paul Bremer', 'Pete Sampras',
'Recep Tayyip Erdogan', 'Ricardo Lagos', 'Roh Moo-hyun',
'Rudolph Giuliani', 'Saddam Hussein', 'Serena Williams',
'Silvio Berlusconi', 'Tiger Woods', 'Tom Daschle', 'Tom Ridge',
'Tony Blair', 'Vicente Fox', 'Vladimir Putin', 'Winona Ryder'],
dtype='<U25')
import matplotlib.pyplot as plt
plt.figure(figsize=[15,15])
for i in range(20):
plt.subplot(4,5,i+1)
plt.title(people.target_names[people.target[i]]+'('+str(people.target[i])+')')
plt.imshow(people.images[i],cmap='gray')
plt.axis('off')
import numpy as np
for i,(name,count) in enumerate(zip(people.target_names,np.bincount(people.target))):
print('%02d %-30s %3d'%(i,name,count))
'''
for i in range(people.target_names.shape[0]):
print('%02d %-30s %3d'%(i,people.target_names[i],len(people.target[people.target==i])))
'''
00 Alejandro Toledo 39
01 Alvaro Uribe 35
02 Amelie Mauresmo 21
03 Andre Agassi 36
04 Angelina Jolie 20
05 Ariel Sharon 77
06 Arnold Schwarzenegger 42
07 Atal Bihari Vajpayee 24
08 Bill Clinton 29
09 Carlos Menem 21
10 Colin Powell 236
11 David Beckham 31
12 Donald Rumsfeld 121
13 George Robertson 22
14 George W Bush 530
15 Gerhard Schroeder 109
16 Gloria Macapagal Arroyo 44
17 Gray Davis 26
18 Guillermo Coria 30
19 Hamid Karzai 22
20 Hans Blix 39
21 Hugo Chavez 71
22 Igor Ivanov 20
23 Jack Straw 28
24 Jacques Chirac 52
25 Jean Chretien 55
26 Jennifer Aniston 21
27 Jennifer Capriati 42
28 Jennifer Lopez 21
29 Jeremy Greenstock 24
30 Jiang Zemin 20
31 John Ashcroft 53
32 John Negroponte 31
33 Jose Maria Aznar 23
34 Juan Carlos Ferrero 28
35 Junichiro Koizumi 60
36 Kofi Annan 32
37 Laura Bush 41
38 Lindsay Davenport 22
39 Lleyton Hewitt 41
40 Luiz Inacio Lula da Silva 48
41 Mahmoud Abbas 29
42 Megawati Sukarnoputri 33
43 Michael Bloomberg 20
44 Naomi Watts 22
45 Nestor Kirchner 37
46 Paul Bremer 20
47 Pete Sampras 22
48 Recep Tayyip Erdogan 30
49 Ricardo Lagos 27
50 Roh Moo-hyun 32
51 Rudolph Giuliani 26
52 Saddam Hussein 23
53 Serena Williams 52
54 Silvio Berlusconi 33
55 Tiger Woods 23
56 Tom Daschle 25
57 Tom Ridge 33
58 Tony Blair 144
59 Vicente Fox 32
60 Vladimir Putin 49
61 Winona Ryder 24
mask=np.zeros(len(people.target),dtype=bool)
mask.shape
# 사람당 50개의 사진만 뽑는 방법
for i in np.unique(people.target):
mask[np.where(people.target==i)[0][:50]]=True
mask
array([ True, True, True, ..., False, False, False])
반응형
'[AI] > python.sklearn' 카테고리의 다른 글
sklearn.neighbors.KNeighborsClassifier.mnist (0) | 2020.04.23 |
---|---|
sklearn.PCA(2)를 이용한 digit data visualization (0) | 2020.04.23 |
sklearn.datasets.load_digits (0) | 2020.04.23 |
sklearn.decomposition.PCA.picture.recover (0) | 2020.04.22 |
sklearn.naive_bayes.BernoulliNB (0) | 2020.04.21 |
sklearn.ensemble .GradientBoostingClassifier (0) | 2020.04.21 |
sklearn.decomposition.PCA.dimension(30->2) (0) | 2020.04.21 |
sklearn.decomposition.PCA.dimension(4->2) (0) | 2020.04.21 |
Comments