일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 머신러닝
- web 사진
- cudnn
- postorder
- inorder
- 웹 용어
- java역사
- web 용어
- CES 2O21 참가
- paragraph
- KNeighborsClassifier
- 대이터
- 결합전문기관
- web 개발
- bccard
- 재귀함수
- html
- tensorflow
- vscode
- classification
- web
- 자료구조
- Keras
- mglearn
- C언어
- discrete_scatter
- CES 2O21 참여
- 데이터전문기관
- pycharm
- broscoding
- Today
- Total
목록[AI] (189)
bro's coding
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/brqyLl/btqDyEfdvoz/ScZmIU1miZ4337BKbb7lkK/img.png)
from sklearn.datasets import make_moons X,y=make_moons(noise=0.1) plt.scatter(X[:,0],X[:,1],c=y) np.bincount(dbscan.labels_+1) # +1을 해줘야함! # array([ 8, 25, 23, 17, 27], dtype=int64)
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/05Vtf/btqDCaQ4auL/6yklspLBpi2EmcKPObajyk/img.png)
from sklearn.datasets import make_blobs X,y=make_blobs() for i in range(3): print((y==i).sum()) ''' 34 33 33 ''' plt.scatter(X[:,0],X[:,1],c=y) plt.colorbar() from sklearn.cluster import KMeans model=KMeans(n_clusters=3) # n_clusters : 중점 갯수 model.fit(X) # X만 넣는다! model.cluster_centers_ plt.scatter(X[:,0],X[:,1],c=model.labels_) # 중심점 마크 plt.scatter(model.cluster_centers_[:,0],model.cluster_cent..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/cpG7Wr/btqDzk76lYM/WDVDlxKSBK1zKxIlXUw690/img.png)
StandardScaler : 각 속성들을 평균이 0, 표준편차가 1이 되도록 조정 MinMaxScaler : 최소값이 0, 최대값이 1이 되도록 비율을 조정 Normalizer : 속성(열)이 아니라 각각의 샘플(행)의 유클리디안 길이가 1이 되도록 조정 (지름이 1인 구 표면에 각각의 샘플을 투영) import numpy as np import pandas as pd import matplotlib.pyplot as plt X = np.arange(12).reshape(4,3) X ''' array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) ''' # 각 속성(열)의 범위를 0~1 로 제한하고 싶을 경우 X_max = X.max(axis=0) X_mi..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/2jHnl/btqDzkfJmds/bkrAilXnWZlIPnxlQ7hsk1/img.png)
https://broscoding.tistory.com/160 머신러닝.RandomForestClassifier.기초 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer cancer=load_breast_cancer() X_train,X_test,y_t.. broscoding.tistory.com model = RandomForestClassifier(n_estimators=100, max_depth=5) # default is 10 model.fit(cancer.data, cancer...
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/Amyds/btqDyNbqfZ2/1qtFxBfak0MkgRusyqQpIk/img.png)
https://broscoding.tistory.com/160 머신러닝.RandomForestClassifier.기초 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer cancer=load_breast_cancer() X_train,X_test,y_t.. broscoding.tistory.com X=cancer.data[:,[0,1]] y=cancer.target X_train,X_test,y_train,y_test=train_test_split(X,y) model=RandomFores..
import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer cancer=load_breast_cancer() X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target) from sklearn.ensemble import RandomForestClassifier model=RandomForestClassifier(n_estimators=100) model.fit(X_train,y_train) train_score=model...
1. 아나콘다에서 [pip install graphviz] 2. http://www.graphviz.org/ Graphviz - Graph Visualization Software Welcome to Graphviz Please join the brand new (March 2020) Graphviz forum to ask questions and discuss Graphviz. What is Graphviz? Graphviz is open source graph visualization software. Graph visualization is a way of representing structural information as www.graphviz.org 위 사이트에서 down load 에 가서 프..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/uhh5g/btqDxvCtFVa/IkHba3PkNnkjFEQx59pWr1/img.png)
import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer cancer =load_breast_cancer() from sklearn.tree import DecisionTreeClassifier X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target) score_train=[] score_test=[] for depth in range(1,10): model=DecisionTreeClassifier(max_depth=d..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/T5kOu/btqDweONnJq/9AQyxXgLmH5n5IMNStz2e1/img.png)
linear_model.LinearRegression. import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer # data 준비 cancer =load_breast_cancer() # column 컨트롤러 col1=0 col2=6 # visualization plt.scatter(cancer.data[:,col1],cancer.data[:,col2],c=cancer.target,alpha=0.3) # 선형 회귀선 from sklearn.linear_mode..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/I8wod/btqDweBgsVb/H4k4YEbguzkVqKued6qEYK/img.png)
from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.datasets import load_iris iris = load_iris() X = iris.data[:, [0]] y = iris.data[:, 2] plt.scatter(X, y) plt.axis('equal') model = LinearRegression() model.fit(X, y) w = model.coef_[0] b = model.intercept_ print(model.score(X, y), model.coef_) # 0.759955310..