반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- 머신러닝
- cudnn
- classification
- 대이터
- web 개발
- bccard
- C언어
- web 사진
- vscode
- 결합전문기관
- inorder
- 자료구조
- java역사
- CES 2O21 참여
- CES 2O21 참가
- Keras
- web 용어
- 재귀함수
- KNeighborsClassifier
- mglearn
- pycharm
- 데이터전문기관
- html
- postorder
- web
- broscoding
- tensorflow
- 웹 용어
- discrete_scatter
- paragraph
Archives
- Today
- Total
bro's coding
중간층 만들기(값예측) 본문
반응형
data : iris
X : iris.data[:,[0,1,2]]
y : iris.data[:,3]
w : random.randn
중간층의 활성함수 : Relu
- 중간층 뉴런 10개를 포함해 y 값 추정하기.
import numpy as np
from sklearn.datasets import load_iris
X=iris.data[:,[0,1,2]]
y=iris.data[:,3]
w=np.random.randn(3,10)
b=np.random.randn(10)
# Relu 적용
u=np.maximum(0,X@w+b)
ww=np.random.randn(10,1)
b=np.random.randn(1)
pred_y=u@ww+b
pred_y
array([[-13.68528237],
[-11.99422824],
[-12.98971925],
[-12.7758113 ],
[-14.1480654 ],
[-14.70377861],
[-13.92116272],
[-13.33053468],
[-12.318053 ],
[-12.29810617],
[-14.09602274],
[-13.6442963 ],
[-12.08320838],
[-12.73788397],
[-15.07128567],
[-16.44570249],
[-14.98347842],
[-13.68528237],
[-14.06303528],
[-14.73676606],
[-12.83476419],
[-14.36296318],
[-14.78368579],
[-12.72790174],
[-13.90478229],
[-11.76539819],
[-13.26060972],
[-13.52637727],
[-13.22249934],
[-13.04810479],
[-12.41211623],
[-12.97461409],
[-15.76919457],
[-15.94598197],
[-12.29810617],
[-12.79270377],
[-13.39928674],
[-12.29810617],
[-12.64195103],
[-13.24155453],
[-13.84418746],
[ -9.80345359],
[-13.46340441],
[-13.63441261],
[-14.87190345],
[-12.08320838],
[-14.66684111],
[-13.09970934],
[-14.18500289],
[-13.02665674],
[-10.55877029],
[-11.73668418],
[-10.54696279],
[ -9.63335747],
[ -9.95534421],
[-11.6706105 ],
[-12.54633007],
[-10.78785475],
[-10.14080903],
[-11.86522118],
[ -9.09334343],
[-11.78105416],
[ -8.09632143],
[-11.35394703],
[-11.52514111],
[-10.56334322],
[-12.71732575],
[-10.68730729],
[ -8.079941 ],
[-10.14272032],
[-13.12347951],
[-10.33541972],
[ -9.43417385],
[-10.94322034],
[-10.33084678],
[-10.3778784 ],
[ -9.45321592],
[-10.6735885 ],
[-11.40555158],
[ -9.9808705 ],
[ -9.87042684],
[ -9.78359818],
[-10.51364997],
[-11.10507016],
[-13.16784949],
[-13.45918504],
[-10.82382921],
[ -8.17857716],
[-12.37001111],
[-10.45481085],
[-11.21285219],
[-11.67784507],
[-10.18975194],
[-10.15186619],
[-11.22465969],
[-12.2315779 ],
[-11.82085121],
[-10.78137052],
[-10.48757172],
[-11.32329585],
[-13.67510266],
[-11.5555939 ],
[-10.55399897],
[-11.68488124],
[-11.81874152],
[-10.03549025],
[-12.24052537],
[-10.04006318],
[ -9.31458432],
[-12.96675458],
[-12.03239428],
[-10.37768001],
[-10.88246993],
[-10.87257372],
[-11.96632059],
[-12.43131347],
[-11.55825554],
[-13.18287058],
[ -8.42780759],
[ -8.96460804],
[-11.65231877],
[-12.24318701],
[ -9.07560366],
[-10.25562723],
[-12.5135692 ],
[-11.23701914],
[-10.80478713],
[-11.93833105],
[-11.04889268],
[-10.24190844],
[ -9.2304173 ],
[-12.47186086],
[-11.04889268],
[-10.84001125],
[-10.90322491],
[ -9.37608508],
[-13.73851471],
[-12.1942441 ],
[-12.07676426],
[-10.98110609],
[-11.60528715],
[-10.72062011],
[-11.5555939 ],
[-12.05123796],
[-12.5135692 ],
[-10.84724582],
[ -9.52100251],
[-11.29776956],
[-13.79011925],
[-12.56251211]])
mse=((y-pred_y)**2).mean()
mse
173.90711513080973
반응형
'[AI] > python.Neural_Network' 카테고리의 다른 글
다중 분류 원리 (0) | 2020.05.08 |
---|---|
경사하강법 (0) | 2020.05.08 |
중간층 만들기(분류) (0) | 2020.05.07 |
activation function(활성 함수) (0) | 2020.05.07 |
neural_network.logisticRegression.원리알기 (0) | 2020.05.06 |
Comments