반응형
    
    
    
  
														Notice
														
												
											
												
												
													Recent Posts
													
											
												
												
													Recent Comments
													
											
												
												
													Link
													
											
									| 일 | 월 | 화 | 수 | 목 | 금 | 토 | 
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 
| 23 | 24 | 25 | 26 | 27 | 28 | 29 | 
| 30 | 
													Tags
													
											
												
												- classification
- 자료구조
- paragraph
- CES 2O21 참여
- java역사
- html
- web 용어
- broscoding
- bccard
- tensorflow
- C언어
- CES 2O21 참가
- pycharm
- Keras
- postorder
- 재귀함수
- web
- inorder
- web 사진
- vscode
- 대이터
- cudnn
- discrete_scatter
- 결합전문기관
- 머신러닝
- KNeighborsClassifier
- mglearn
- 웹 용어
- 데이터전문기관
- web 개발
													Archives
													
											
												
												- Today
- Total
bro's coding
sklearn.cluster.DBSCAN 본문
반응형
    
    
    
  https://broscoding.tistory.com/165
머신러닝.sklearn.datasets.make_moons
from sklearn.datasets import make_moons X,y=make_moons(noise=0.1) plt.scatter(X[:,0],X[:,1],c=y)
broscoding.tistory.com
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs,make_circles,make_moons
X,y=make_moons(noise=0.07,random_state=1)
plt.scatter(X[:,0],X[:,1],c=y,cmap='Reds')
from sklearn.cluster import DBSCAN
dbscan=DBSCAN(min_samples=3,eps=0.3)# min_samples = 3(반경안에 들어오는 셈플 수)
dbscan.fit(X)
plt.scatter(X[:,0],X[:,1],c=dbscan.labels_)
plt.colorbar()
from sklearn.cluster import DBSCAN
dbscan=DBSCAN(min_samples=9,eps=0.3) # min_samples = 9(반경안에 들어오는 셈플 수)
dbscan.fit(X)
plt.scatter(X[:,0],X[:,1],c=dbscan.labels_)
plt.colorbar()
반응형
    
    
    
  '[AI] > python.sklearn' 카테고리의 다른 글
| sklearn.decomposition.PCA.dimension(30->2) (0) | 2020.04.21 | 
|---|---|
| sklearn.decomposition.PCA.dimension(4->2) (0) | 2020.04.21 | 
| sklearn.decomposition.PCA.visualization (0) | 2020.04.21 | 
| sklearn.decomposition.PCA.basic (0) | 2020.04.21 | 
| sklearn.datasets.make_moons (0) | 2020.04.21 | 
| sklearn.cluster.KMeans.basic (0) | 2020.04.21 | 
| sklearn.preprocessing.MinMaxScaler, StandardScaler, Normalizer (0) | 2020.04.20 | 
| sklearn.RandomForestClassifier.feature_importances_(중요도 표현) (0) | 2020.04.20 | 
			  Comments
			
		
	
               
           
					
					
					
					
					
					
				 
								 
								 
								