반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- 대이터
- 웹 용어
- C언어
- 머신러닝
- web
- CES 2O21 참여
- 데이터전문기관
- paragraph
- java역사
- mglearn
- tensorflow
- html
- CES 2O21 참가
- web 용어
- pycharm
- postorder
- broscoding
- discrete_scatter
- 재귀함수
- 결합전문기관
- 자료구조
- bccard
- web 사진
- vscode
- KNeighborsClassifier
- classification
- inorder
- cudnn
- Keras
- web 개발
Archives
- Today
- Total
bro's coding
머신러닝.linearSVM(class:3) 본문
반응형
iris=load_iris()
X=iris.data
y=iris.target
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
model=LinearSVC(C=1)
model.fit(X_train,y_train)
pred_y=model.predict(X_test)
model.score(X_test,y_test)
model.decision_function(X_test)
guideline과 나의 거리
양수면 내 쪽에 속한것
array([[-6.58398872e-01, -1.41247905e-01, -2.21407969e+00],
[ 1.91618644e+00, -1.16266051e+00, -8.10343365e+00],
[ 1.07804396e+00, -1.09053098e+00, -5.69986669e+00],
[-2.64718553e+00, 6.44799907e-03, 5.43519426e-01],
[ 1.00454023e+00, -2.78622807e-01, -6.01808613e+00],
[ 1.40437646e+00, -7.80780031e-01, -6.78109621e+00],
[-2.15142034e+00, 1.61427817e-01, -4.13611333e-02],
[-1.29577364e+00, 2.67636342e-01, -1.73429683e+00],
[-2.90442612e+00, -1.22305865e-01, 1.27231701e+00],
[ 1.14805647e+00, -3.64525274e-01, -6.19271028e+00],
[-2.36955468e+00, -4.26660878e-01, 6.40157860e-01],
[-2.49556669e+00, -1.62420358e-01, 1.52541327e+00],
[ 1.41831153e+00, -1.11055036e+00, -6.70829887e+00],
[-2.75644190e+00, -1.87226954e-01, 1.61527545e+00],
[-1.75526911e+00, 2.56293758e-01, -9.30731619e-01],
[-2.03593362e+00, -2.24073698e-01, 1.90214217e-01],
[-1.39106055e+00, -2.74057916e-01, -7.22651928e-01],
[ 1.36800354e+00, -8.69670323e-01, -6.60105548e+00],
[-1.39635521e+00, 7.31147425e-01, -1.65271850e+00],
[-2.82261004e+00, -5.51116131e-01, 1.68268529e+00],
[-1.31081974e+00, -3.12934987e-01, -1.24889827e+00],
[ 1.31572344e+00, -4.94696243e-01, -6.21519171e+00],
[ 1.14241198e+00, -6.83792661e-01, -6.15319846e+00],
[-1.40383754e+00, -1.02579520e-01, -1.59930175e+00],
[ 1.37359519e+00, -9.88731892e-01, -6.75441691e+00],
[-3.00419611e+00, -5.66001754e-01, 1.25270286e+00],
[ 1.34194949e+00, -7.27805735e-01, -6.74039475e+00],
[-1.74524722e+00, -3.99095135e-01, -1.66683607e-01],
[-3.00318828e+00, 3.99086841e-01, 1.09323235e+00],
[-1.78421587e+00, -1.27562270e-02, -6.51038855e-01]])
반응형
'[AI] > python.sklearn' 카테고리의 다른 글
sklearn.kernel 기법 기초 (0) | 2020.04.16 |
---|---|
머신러닝.make_circles 사용하기 (0) | 2020.04.16 |
머신러닝.상관계수 구하기 (0) | 2020.04.16 |
머신러닝.Pearson correlation coefficient(피어슨 상관 계수) (0) | 2020.04.14 |
머신러닝.model 정리 (0) | 2020.04.14 |
머신러닝.Linear SVM(선형 서포트벡터머신) 기초 (0) | 2020.04.14 |
머신러닝.크로스 엔트로피 (0) | 2020.04.13 |
머신러닝.soft max (0) | 2020.04.13 |
Comments