반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- 결합전문기관
- 머신러닝
- classification
- html
- discrete_scatter
- web
- 데이터전문기관
- broscoding
- paragraph
- CES 2O21 참여
- postorder
- java역사
- 웹 용어
- vscode
- KNeighborsClassifier
- inorder
- web 사진
- Keras
- tensorflow
- bccard
- 대이터
- 자료구조
- pycharm
- CES 2O21 참가
- 재귀함수
- C언어
- web 용어
- mglearn
- cudnn
- web 개발
Archives
- Today
- Total
bro's coding
GAN.source 본문
반응형
from keras.layers import Input, Conv2D, Flatten, Dense, Conv2DTranspose, Reshape, Lambda, Activation, BatchNormalization, LeakyReLU, Dropout, ZeroPadding2D, UpSampling2D
from keras.layers.merge import _Merge
from keras.models import Model, Sequential
from keras import backend as K
from keras.optimizers import Adam, RMSprop
from keras.utils import plot_model
from keras.initializers import RandomNormal
import numpy as np
import json
import os
import pickle as pkl
import matplotlib.pyplot as plt
class GAN():
def __init__(self
, input_dim
, discriminator_conv_filters
, discriminator_conv_kernel_size
, discriminator_conv_strides
, discriminator_batch_norm_momentum
, discriminator_activation
, discriminator_dropout_rate
, discriminator_learning_rate
, generator_initial_dense_layer_size
, generator_upsample
, generator_conv_filters
, generator_conv_kernel_size
, generator_conv_strides
, generator_batch_norm_momentum
, generator_activation
, generator_dropout_rate
, generator_learning_rate
, optimiser
, z_dim
):
self.name = 'gan'
self.input_dim = input_dim
self.discriminator_conv_filters = discriminator_conv_filters
self.discriminator_conv_kernel_size = discriminator_conv_kernel_size
self.discriminator_conv_strides = discriminator_conv_strides
self.discriminator_batch_norm_momentum = discriminator_batch_norm_momentum
self.discriminator_activation = discriminator_activation
self.discriminator_dropout_rate = discriminator_dropout_rate
self.discriminator_learning_rate = discriminator_learning_rate
self.generator_initial_dense_layer_size = generator_initial_dense_layer_size
self.generator_upsample = generator_upsample
self.generator_conv_filters = generator_conv_filters
self.generator_conv_kernel_size = generator_conv_kernel_size
self.generator_conv_strides = generator_conv_strides
self.generator_batch_norm_momentum = generator_batch_norm_momentum
self.generator_activation = generator_activation
self.generator_dropout_rate = generator_dropout_rate
self.generator_learning_rate = generator_learning_rate
self.optimiser = optimiser
self.z_dim = z_dim
self.n_layers_discriminator = len(discriminator_conv_filters)
self.n_layers_generator = len(generator_conv_filters)
self.weight_init = RandomNormal(mean=0., stddev=0.02)
self.d_losses = []
self.g_losses = []
self.epoch = 0
self._build_discriminator()
self._build_generator()
self._build_adversarial()
def get_activation(self, activation):
if activation == 'leaky_relu':
layer = LeakyReLU(alpha = 0.2)
else:
layer = Activation(activation)
return layer
def _build_discriminator(self):
### THE discriminator
discriminator_input = Input(shape=self.input_dim, name='discriminator_input')
x = discriminator_input
for i in range(self.n_layers_discriminator):
x = Conv2D(
filters = self.discriminator_conv_filters[i]
, kernel_size = self.discriminator_conv_kernel_size[i]
, strides = self.discriminator_conv_strides[i]
, padding = 'same'
, name = 'discriminator_conv_' + str(i)
, kernel_initializer = self.weight_init
)(x)
if self.discriminator_batch_norm_momentum and i > 0:
x = BatchNormalization(momentum = self.discriminator_batch_norm_momentum)(x)
x = self.get_activation(self.discriminator_activation)(x)
if self.discriminator_dropout_rate:
x = Dropout(rate = self.discriminator_dropout_rate)(x)
x = Flatten()(x)
discriminator_output = Dense(1, activation='sigmoid', kernel_initializer = self.weight_init)(x)
self.discriminator = Model(discriminator_input, discriminator_output)
def _build_generator(self):
### THE generator
generator_input = Input(shape=(self.z_dim,), name='generator_input')
x = generator_input
x = Dense(np.prod(self.generator_initial_dense_layer_size), kernel_initializer = self.weight_init)(x)
if self.generator_batch_norm_momentum:
x = BatchNormalization(momentum = self.generator_batch_norm_momentum)(x)
x = self.get_activation(self.generator_activation)(x)
x = Reshape(self.generator_initial_dense_layer_size)(x)
if self.generator_dropout_rate:
x = Dropout(rate = self.generator_dropout_rate)(x)
for i in range(self.n_layers_generator):
if self.generator_upsample[i] == 2:
x = UpSampling2D()(x)
x = Conv2D(
filters = self.generator_conv_filters[i]
, kernel_size = self.generator_conv_kernel_size[i]
, padding = 'same'
, name = 'generator_conv_' + str(i)
, kernel_initializer = self.weight_init
)(x)
else:
x = Conv2DTranspose(
filters = self.generator_conv_filters[i]
, kernel_size = self.generator_conv_kernel_size[i]
, padding = 'same'
, strides = self.generator_conv_strides[i]
, name = 'generator_conv_' + str(i)
, kernel_initializer = self.weight_init
)(x)
if i < self.n_layers_generator - 1:
if self.generator_batch_norm_momentum:
x = BatchNormalization(momentum = self.generator_batch_norm_momentum)(x)
x = self.get_activation(self.generator_activation)(x)
else:
x = Activation('tanh')(x)
generator_output = x
self.generator = Model(generator_input, generator_output)
def get_opti(self, lr):
if self.optimiser == 'adam':
opti = Adam(lr=lr, beta_1=0.5)
elif self.optimiser == 'rmsprop':
opti = RMSprop(lr=lr)
else:
opti = Adam(lr=lr)
return opti
def set_trainable(self, m, val):
m.trainable = val
for l in m.layers:
l.trainable = val
def _build_adversarial(self):
### COMPILE DISCRIMINATOR
self.discriminator.compile(
optimizer=self.get_opti(self.discriminator_learning_rate)
, loss = 'binary_crossentropy'
, metrics = ['accuracy']
)
### COMPILE THE FULL GAN
self.set_trainable(self.discriminator, False)
model_input = Input(shape=(self.z_dim,), name='model_input')
model_output = self.discriminator(self.generator(model_input))
self.model = Model(model_input, model_output)
self.model.compile(optimizer=self.get_opti(self.generator_learning_rate) , loss='binary_crossentropy', metrics=['accuracy'])
self.set_trainable(self.discriminator, True)
def train_discriminator(self, x_train, batch_size, using_generator):
valid = np.ones((batch_size,1))
fake = np.zeros((batch_size,1))
if using_generator:
true_imgs = next(x_train)[0]
if true_imgs.shape[0] != batch_size:
true_imgs = next(x_train)[0]
else:
idx = np.random.randint(0, x_train.shape[0], batch_size)
true_imgs = x_train[idx]
noise = np.random.normal(0, 1, (batch_size, self.z_dim))
gen_imgs = self.generator.predict(noise)
d_loss_real, d_acc_real = self.discriminator.train_on_batch(true_imgs, valid)
d_loss_fake, d_acc_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * (d_loss_real + d_loss_fake)
d_acc = 0.5 * (d_acc_real + d_acc_fake)
return [d_loss, d_loss_real, d_loss_fake, d_acc, d_acc_real, d_acc_fake]
def train_generator(self, batch_size):
valid = np.ones((batch_size,1))
noise = np.random.normal(0, 1, (batch_size, self.z_dim))
return self.model.train_on_batch(noise, valid)
def train(self, x_train, batch_size, epochs, run_folder
, print_every_n_batches = 50
, using_generator = False):
for epoch in range(self.epoch, self.epoch + epochs):
d = self.train_discriminator(x_train, batch_size, using_generator)
g = self.train_generator(batch_size)
print ("%d [D loss: (%.3f)(R %.3f, F %.3f)] [D acc: (%.3f)(%.3f, %.3f)] [G loss: %.3f] [G acc: %.3f]" % (epoch, d[0], d[1], d[2], d[3], d[4], d[5], g[0], g[1]))
self.d_losses.append(d)
self.g_losses.append(g)
if epoch % print_every_n_batches == 0:
self.sample_images(run_folder)
self.model.save_weights(os.path.join(run_folder, 'weights/weights-%d.h5' % (epoch)))
self.model.save_weights(os.path.join(run_folder, 'weights/weights.h5'))
self.save_model(run_folder)
self.epoch += 1
def sample_images(self, run_folder):
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, self.z_dim))
gen_imgs = self.generator.predict(noise)
gen_imgs = 0.5 * (gen_imgs + 1)
gen_imgs = np.clip(gen_imgs, 0, 1)
fig, axs = plt.subplots(r, c, figsize=(15,15))
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(np.squeeze(gen_imgs[cnt, :,:,:]), cmap = 'gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig(os.path.join(run_folder, "images/sample_%d.png" % self.epoch))
plt.close()
def plot_model(self, run_folder):
plot_model(self.model, to_file=os.path.join(run_folder ,'viz/model.png'), show_shapes = True, show_layer_names = True)
plot_model(self.discriminator, to_file=os.path.join(run_folder ,'viz/discriminator.png'), show_shapes = True, show_layer_names = True)
plot_model(self.generator, to_file=os.path.join(run_folder ,'viz/generator.png'), show_shapes = True, show_layer_names = True)
def save(self, folder):
with open(os.path.join(folder, 'params.pkl'), 'wb') as f:
pkl.dump([
self.input_dim
, self.discriminator_conv_filters
, self.discriminator_conv_kernel_size
, self.discriminator_conv_strides
, self.discriminator_batch_norm_momentum
, self.discriminator_activation
, self.discriminator_dropout_rate
, self.discriminator_learning_rate
, self.generator_initial_dense_layer_size
, self.generator_upsample
, self.generator_conv_filters
, self.generator_conv_kernel_size
, self.generator_conv_strides
, self.generator_batch_norm_momentum
, self.generator_activation
, self.generator_dropout_rate
, self.generator_learning_rate
, self.optimiser
, self.z_dim
], f)
self.plot_model(folder)
def save_model(self, run_folder):
self.model.save(os.path.join(run_folder, 'model.h5'))
self.discriminator.save(os.path.join(run_folder, 'discriminator.h5'))
self.generator.save(os.path.join(run_folder, 'generator.h5'))
pkl.dump(self, open( os.path.join(run_folder, "obj.pkl"), "wb" ))
def load_weights(self, filepath):
self.model.load_weights(filepath)
https://broscoding.tistory.com/308
반응형
'[AI] > GAN' 카테고리의 다른 글
GAN VS DCGAN (0) | 2020.07.15 |
---|---|
WGAN.weight clipping(가중치 클리핑) (0) | 2020.07.15 |
WGAN.source (0) | 2020.07.15 |
WGAN.mode collapse(모드 붕괴) (0) | 2020.07.15 |
WGAN.example.train.cifar (0) | 2020.07.14 |
GAN.train.camel (0) | 2020.07.14 |
upsampling(업샘플링) (0) | 2020.07.14 |
GAN이란...? (0) | 2020.07.08 |
Comments