반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- mglearn
- bccard
- java역사
- postorder
- pycharm
- CES 2O21 참가
- 대이터
- KNeighborsClassifier
- discrete_scatter
- 결합전문기관
- inorder
- 머신러닝
- C언어
- cudnn
- tensorflow
- CES 2O21 참여
- paragraph
- 웹 용어
- vscode
- web 사진
- broscoding
- web
- 자료구조
- 데이터전문기관
- Keras
- html
- 재귀함수
- web 개발
- web 용어
- classification
Archives
- Today
- Total
bro's coding
keras.mnist(중간층X) 본문
반응형
import keras
from keras.datasets import mnist
(X_train,y_train),(X_test,y_test)=mnist.load_data()
# 데이터 전처리
X_train=X_train.reshape(-1,28*28)/255.
X_test=X_test.reshape(-1,28*28)/255.
y_train=np.eye(10)[y_train]
y_test=np.eye(10)[y_test]
model=Sequential()
model.add(Dense(1,input_shape=(28,28),activation='sigmoid'))
from keras.optimizers import SGD
model.compile(loss='binary_crossentropy',optimizer=SGD(lr=0.1),metrics=['acc'])
# metrics=['acc'] : 화면 출력 할 때 정확도도 출력해라!(history에서 확인 가능)
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD,RMSprop,Adagrad
model=Sequential()
model.add(Dense(10,input_shape=(784,),activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['acc'])
model.fit(X_train,y_train,epochs=100)
pred_y=model.predict(X_test)
ws=model.get_weights()
ws[0]
array([[ 0.00650029, 0.07752211, 0.04841069, ..., -0.07710665,
-0.00478213, 0.01459844],
[-0.06074725, -0.00682037, 0.08317574, ..., 0.07438696,
0.01124036, 0.02353244],
[ 0.06043867, -0.04523697, -0.06475241, ..., 0.08567973,
0.07345223, 0.08374571],
...,
[ 0.03114741, -0.02464399, -0.05945008, ..., -0.07596971,
-0.06711061, 0.01014983],
[-0.06079032, -0.04003002, 0.00654893, ..., -0.08453656,
0.04763127, 0.06974082],
[ 0.01717632, -0.06559615, -0.066451 , ..., 0.07759722,
-0.08055964, -0.02816157]], dtype=float32)
plt.figure(figsize=[10,10])
for i in range(10):
plt.subplot(2,5,i+1)
plt.title(i)
plt.imshow(ws[0][:,i].reshape(-1,28))
반응형
'[AI] > python.keras' 카테고리의 다른 글
keras.layers.Flatten (0) | 2020.05.13 |
---|---|
keras.save (0) | 2020.05.13 |
keras.score (0) | 2020.05.13 |
keras.mnist(중간층) (0) | 2020.05.13 |
keras.mnist (0) | 2020.05.13 |
keras.iris(분류) (0) | 2020.05.13 |
keras.basic(분류) (0) | 2020.05.13 |
keras.iris(예측 ) (0) | 2020.05.13 |
Comments