[AI]/GAN

GAN.source

givemebro 2020. 7. 15. 10:58
반응형
from keras.layers import Input, Conv2D, Flatten, Dense, Conv2DTranspose, Reshape, Lambda, Activation, BatchNormalization, LeakyReLU, Dropout, ZeroPadding2D, UpSampling2D
from keras.layers.merge import _Merge

from keras.models import Model, Sequential
from keras import backend as K
from keras.optimizers import Adam, RMSprop
from keras.utils import plot_model
from keras.initializers import RandomNormal

import numpy as np
import json
import os
import pickle as pkl
import matplotlib.pyplot as plt


class GAN():
    def __init__(self
        , input_dim
        , discriminator_conv_filters
        , discriminator_conv_kernel_size
        , discriminator_conv_strides
        , discriminator_batch_norm_momentum
        , discriminator_activation
        , discriminator_dropout_rate
        , discriminator_learning_rate
        , generator_initial_dense_layer_size
        , generator_upsample
        , generator_conv_filters
        , generator_conv_kernel_size
        , generator_conv_strides
        , generator_batch_norm_momentum
        , generator_activation
        , generator_dropout_rate
        , generator_learning_rate
        , optimiser
        , z_dim
        ):

        self.name = 'gan'

        self.input_dim = input_dim
        self.discriminator_conv_filters = discriminator_conv_filters
        self.discriminator_conv_kernel_size = discriminator_conv_kernel_size
        self.discriminator_conv_strides = discriminator_conv_strides
        self.discriminator_batch_norm_momentum = discriminator_batch_norm_momentum
        self.discriminator_activation = discriminator_activation
        self.discriminator_dropout_rate = discriminator_dropout_rate
        self.discriminator_learning_rate = discriminator_learning_rate

        self.generator_initial_dense_layer_size = generator_initial_dense_layer_size
        self.generator_upsample = generator_upsample
        self.generator_conv_filters = generator_conv_filters
        self.generator_conv_kernel_size = generator_conv_kernel_size
        self.generator_conv_strides = generator_conv_strides
        self.generator_batch_norm_momentum = generator_batch_norm_momentum
        self.generator_activation = generator_activation
        self.generator_dropout_rate = generator_dropout_rate
        self.generator_learning_rate = generator_learning_rate
        
        self.optimiser = optimiser
        self.z_dim = z_dim

        self.n_layers_discriminator = len(discriminator_conv_filters)
        self.n_layers_generator = len(generator_conv_filters)

        self.weight_init = RandomNormal(mean=0., stddev=0.02)

        self.d_losses = []
        self.g_losses = []

        self.epoch = 0

        self._build_discriminator()
        self._build_generator()

        self._build_adversarial()

    def get_activation(self, activation):
        if activation == 'leaky_relu':
            layer = LeakyReLU(alpha = 0.2)
        else:
            layer = Activation(activation)
        return layer

    def _build_discriminator(self):

        ### THE discriminator
        discriminator_input = Input(shape=self.input_dim, name='discriminator_input')

        x = discriminator_input

        for i in range(self.n_layers_discriminator):

            x = Conv2D(
                filters = self.discriminator_conv_filters[i]
                , kernel_size = self.discriminator_conv_kernel_size[i]
                , strides = self.discriminator_conv_strides[i]
                , padding = 'same'
                , name = 'discriminator_conv_' + str(i)
                , kernel_initializer = self.weight_init
                )(x)

            if self.discriminator_batch_norm_momentum and i > 0:
                x = BatchNormalization(momentum = self.discriminator_batch_norm_momentum)(x)

            x = self.get_activation(self.discriminator_activation)(x)

            if self.discriminator_dropout_rate:
                x = Dropout(rate = self.discriminator_dropout_rate)(x)

        x = Flatten()(x)
        
        discriminator_output = Dense(1, activation='sigmoid', kernel_initializer = self.weight_init)(x)

        self.discriminator = Model(discriminator_input, discriminator_output)


    def _build_generator(self):

        ### THE generator

        generator_input = Input(shape=(self.z_dim,), name='generator_input')

        x = generator_input

        x = Dense(np.prod(self.generator_initial_dense_layer_size), kernel_initializer = self.weight_init)(x)

        if self.generator_batch_norm_momentum:
            x = BatchNormalization(momentum = self.generator_batch_norm_momentum)(x)

        x = self.get_activation(self.generator_activation)(x)

        x = Reshape(self.generator_initial_dense_layer_size)(x)

        if self.generator_dropout_rate:
            x = Dropout(rate = self.generator_dropout_rate)(x)

        for i in range(self.n_layers_generator):

            if self.generator_upsample[i] == 2:
                x = UpSampling2D()(x)
                x = Conv2D(
                    filters = self.generator_conv_filters[i]
                    , kernel_size = self.generator_conv_kernel_size[i]
                    , padding = 'same'
                    , name = 'generator_conv_' + str(i)
                    , kernel_initializer = self.weight_init
                )(x)
            else:

                x = Conv2DTranspose(
                    filters = self.generator_conv_filters[i]
                    , kernel_size = self.generator_conv_kernel_size[i]
                    , padding = 'same'
                    , strides = self.generator_conv_strides[i]
                    , name = 'generator_conv_' + str(i)
                    , kernel_initializer = self.weight_init
                    )(x)

            if i < self.n_layers_generator - 1:

                if self.generator_batch_norm_momentum:
                    x = BatchNormalization(momentum = self.generator_batch_norm_momentum)(x)

                x = self.get_activation(self.generator_activation)(x)
                    
                
            else:

                x = Activation('tanh')(x)


        generator_output = x

        self.generator = Model(generator_input, generator_output)

       
    def get_opti(self, lr):
        if self.optimiser == 'adam':
            opti = Adam(lr=lr, beta_1=0.5)
        elif self.optimiser == 'rmsprop':
            opti = RMSprop(lr=lr)
        else:
            opti = Adam(lr=lr)

        return opti

    def set_trainable(self, m, val):
        m.trainable = val
        for l in m.layers:
            l.trainable = val


    def _build_adversarial(self):
        
        ### COMPILE DISCRIMINATOR

        self.discriminator.compile(
        optimizer=self.get_opti(self.discriminator_learning_rate)  
        , loss = 'binary_crossentropy'
        ,  metrics = ['accuracy']
        )
        
        ### COMPILE THE FULL GAN

        self.set_trainable(self.discriminator, False)

        model_input = Input(shape=(self.z_dim,), name='model_input')
        model_output = self.discriminator(self.generator(model_input))
        self.model = Model(model_input, model_output)

        self.model.compile(optimizer=self.get_opti(self.generator_learning_rate) , loss='binary_crossentropy', metrics=['accuracy'])

        self.set_trainable(self.discriminator, True)



    
    def train_discriminator(self, x_train, batch_size, using_generator):

        valid = np.ones((batch_size,1))
        fake = np.zeros((batch_size,1))

        if using_generator:
            true_imgs = next(x_train)[0]
            if true_imgs.shape[0] != batch_size:
                true_imgs = next(x_train)[0]
        else:
            idx = np.random.randint(0, x_train.shape[0], batch_size)
            true_imgs = x_train[idx]
        
        noise = np.random.normal(0, 1, (batch_size, self.z_dim))
        gen_imgs = self.generator.predict(noise)

        d_loss_real, d_acc_real =   self.discriminator.train_on_batch(true_imgs, valid)
        d_loss_fake, d_acc_fake =   self.discriminator.train_on_batch(gen_imgs, fake)
        d_loss =  0.5 * (d_loss_real + d_loss_fake)
        d_acc = 0.5 * (d_acc_real + d_acc_fake)

        return [d_loss, d_loss_real, d_loss_fake, d_acc, d_acc_real, d_acc_fake]

    def train_generator(self, batch_size):
        valid = np.ones((batch_size,1))
        noise = np.random.normal(0, 1, (batch_size, self.z_dim))
        return self.model.train_on_batch(noise, valid)


    def train(self, x_train, batch_size, epochs, run_folder
    , print_every_n_batches = 50
    , using_generator = False):

        for epoch in range(self.epoch, self.epoch + epochs):

            d = self.train_discriminator(x_train, batch_size, using_generator)
            g = self.train_generator(batch_size)

            print ("%d [D loss: (%.3f)(R %.3f, F %.3f)] [D acc: (%.3f)(%.3f, %.3f)] [G loss: %.3f] [G acc: %.3f]" % (epoch, d[0], d[1], d[2], d[3], d[4], d[5], g[0], g[1]))

            self.d_losses.append(d)
            self.g_losses.append(g)

            if epoch % print_every_n_batches == 0:
                self.sample_images(run_folder)
                self.model.save_weights(os.path.join(run_folder, 'weights/weights-%d.h5' % (epoch)))
                self.model.save_weights(os.path.join(run_folder, 'weights/weights.h5'))
                self.save_model(run_folder)

            self.epoch += 1

    
    def sample_images(self, run_folder):
        r, c = 5, 5
        noise = np.random.normal(0, 1, (r * c, self.z_dim))
        gen_imgs = self.generator.predict(noise)

        gen_imgs = 0.5 * (gen_imgs + 1)
        gen_imgs = np.clip(gen_imgs, 0, 1)

        fig, axs = plt.subplots(r, c, figsize=(15,15))
        cnt = 0

        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(np.squeeze(gen_imgs[cnt, :,:,:]), cmap = 'gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig(os.path.join(run_folder, "images/sample_%d.png" % self.epoch))
        plt.close()




    
    def plot_model(self, run_folder):
        plot_model(self.model, to_file=os.path.join(run_folder ,'viz/model.png'), show_shapes = True, show_layer_names = True)
        plot_model(self.discriminator, to_file=os.path.join(run_folder ,'viz/discriminator.png'), show_shapes = True, show_layer_names = True)
        plot_model(self.generator, to_file=os.path.join(run_folder ,'viz/generator.png'), show_shapes = True, show_layer_names = True)



    def save(self, folder):

        with open(os.path.join(folder, 'params.pkl'), 'wb') as f:
            pkl.dump([
                self.input_dim
                , self.discriminator_conv_filters
                , self.discriminator_conv_kernel_size
                , self.discriminator_conv_strides
                , self.discriminator_batch_norm_momentum
                , self.discriminator_activation
                , self.discriminator_dropout_rate
                , self.discriminator_learning_rate
                , self.generator_initial_dense_layer_size
                , self.generator_upsample
                , self.generator_conv_filters
                , self.generator_conv_kernel_size
                , self.generator_conv_strides
                , self.generator_batch_norm_momentum
                , self.generator_activation
                , self.generator_dropout_rate
                , self.generator_learning_rate
                , self.optimiser
                , self.z_dim
                ], f)

        self.plot_model(folder)

    def save_model(self, run_folder):
        self.model.save(os.path.join(run_folder, 'model.h5'))
        self.discriminator.save(os.path.join(run_folder, 'discriminator.h5'))
        self.generator.save(os.path.join(run_folder, 'generator.h5'))
        pkl.dump(self, open( os.path.join(run_folder, "obj.pkl"), "wb" ))

    def load_weights(self, filepath):
        self.model.load_weights(filepath)

https://broscoding.tistory.com/308

 

GAN 참고 문헌

http://book.naver.com/bookdb/book_detail.nhn?bid=15660741 미술관에 GAN 딥러닝 실전 프로젝트 창조에 다가서는 GAN의 4가지 생성 프로젝트이 책은 케라스를 사용한 딥러닝 기초부터 AI 분야 최신 알고리즘까지..

broscoding.tistory.com

 

반응형