[AI]/python.tensorflow
tensorflow.분류(중간층)
givemebro
2020. 5. 12. 15:35
반응형
#속성 4개 3중 분류
# RMSPropOptimizer
# 중간층 사용
# 중간층 뉴런 수 5>10>10>5
# 중간층 활성화 함수 : sigmoid
iris=load_iris()
X=tf.placeholder(tf.float32,shape=(None,4))
y=tf.placeholder(tf.float32,shape=(None,3))
w=tf.Variable(tf.random.normal([4,5],0,0.1))
b=tf.Variable(tf.random.normal([5],0,0.1))
u=tf.nn.sigmoid(X@w+b)
ww=tf.Variable(tf.random.normal([5,10],0,0.1))
bb=tf.Variable(tf.random.normal([10],0,0.1))
uu=tf.nn.sigmoid(u@ww+bb)
www=tf.Variable(tf.random.normal([10,10],0,0.1))
bbb=tf.Variable(tf.random.normal([10],0,0.1))
uuu=tf.nn.sigmoid(uu@www+bbb)
wwww=tf.Variable(tf.random.normal([10,3],0,0.1))
bbbb=tf.Variable(tf.random.normal([3],0,0.1))
pred_y=uuu@wwww+bbbb
##
entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=pred_y))
##
optimizer=tf.train.RMSPropOptimizer(learning_rate=0.01)
train_op=optimizer.minimize(entropy)
costs=[]
sess=tf.InteractiveSession()
tf.global_variables_initializer().run()
from sklearn.model_selection import train_test_split
X_trian,X_test,y_train,y_test=train_test_split(iris.data,np.eye(3)[iris.target])
for i in range(2000):
entropy_val,_=sess.run([entropy,train_op],feed_dict={X:X_trian,y:y_train})
costs.append(entropy_val)
import matplotlib.pyplot as plt
plt.plot(costs)
반응형