[AI]/python.sklearn
sklearn.linear_model.LogisticRegression(로지스틱 회귀)
givemebro
2020. 4. 13. 10:24
반응형
import numpy as np
import matplotlib.pyplot as plt
# data 준비
from sklearn.datasets import make_blobs
X,y=make_blobs(400,2,[[0,0],[5,5]],[2,3])
https://broscoding.tistory.com/128
머신러닝.datasets .make_blobs 사용하기
from sklearn.datasets import make_blobs X,y=make_blobs(400,2,[[0,0],[5,5]],[2,3]) # 400 : 행의 갯수 # 2 : 속성의 갯수 2개(축)(전부 X값임) # 중심점의 위치 # 각 중심점에 대한 편차 2, 3 plt.scatter(X[:..
broscoding.tistory.com
from sklearn.linear_model import LogisticRegression
# model 설정
model=LogisticRegression()
# 훈련
model.fit(X,y)
# 예측
pred_y=model.predict(X)
import mglearn
plt.figure(figsize=[8,6])
# 바탕 관련
mglearn.plots.plot_2d_classification(model,X,cm='Reds',alpha=0.3)
# scatter
mglearn.discrete_scatter(X[:,0],X[:,1],y)
https://broscoding.tistory.com/131
머신러닝.LogisticRegression.predict_proba
https://broscoding.tistory.com/129 머신러닝.linear_model.LogisticRegression(로지스틱 회귀) import numpy as np import matplotlib.pyplot as plt # data 준비 from sklearn.datasets import make_blobs X,y=..
broscoding.tistory.com
반응형